Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Approaching multiple-access channel capacity by nonbinary coding-spreading

Authors: Yuta Tsujii; Guanghui Song; Jun Cheng; Yoichiro Watanabe;

Approaching multiple-access channel capacity by nonbinary coding-spreading

Abstract

As a generalization of the binary coding-spreading scheme, nonbinary coding-spreading scheme is proposed for a synchronous binary-input multiple-access channel (MAC) with Gaussian noise, equal-power, and equal-rate users. In this scheme, each user employs the same nonbinary low-density parity-check code serially concatenated with a nonbinary low-rate mapping, referred to as nonbinary spreading. A user-specific interleaving is employed to make the transmitted data of each user random-like. It is shown that the iterative multi-user decoding threshold of nonbinary coding-spreading scheme is less than 0.5 dB away from the MAC capacity at many sum rates.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!