Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heterogeneous Graph Masked Autoencoders

Authors: Tian, Yijun; Dong, Kaiwen; Zhang, Chunhui; Zhang, Chuxu; Chawla, Nitesh V.;

Heterogeneous Graph Masked Autoencoders

Abstract

Generative self-supervised learning (SSL), especially masked autoencoders, has become one of the most exciting learning paradigms and has shown great potential in handling graph data. However, real-world graphs are always heterogeneous, which poses three critical challenges that existing methods ignore: 1) how to capture complex graph structure? 2) how to incorporate various node attributes? and 3) how to encode different node positions? In light of this, we study the problem of generative SSL on heterogeneous graphs and propose HGMAE, a novel heterogeneous graph masked autoencoder model to address these challenges. HGMAE captures comprehensive graph information via two innovative masking techniques and three unique training strategies. In particular, we first develop metapath masking and adaptive attribute masking with dynamic mask rate to enable effective and stable learning on heterogeneous graphs. We then design several training strategies including metapath-based edge reconstruction to adopt complex structural information, target attribute restoration to incorporate various node attributes, and positional feature prediction to encode node positional information. Extensive experiments demonstrate that HGMAE outperforms both contrastive and generative state-of-the-art baselines on several tasks across multiple datasets. Codes are available at https://github.com/meettyj/HGMAE.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 1%
Top 10%
Top 1%
Green