Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Radiographyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radiography
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radiography
Article . 2024
License: CC BY
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Radiomics evaluation for the early detection of Alzheimer's dementia using T1-weighted MRI

Authors: J.A. Jytzler; S. Lysdahlgaard;

Radiomics evaluation for the early detection of Alzheimer's dementia using T1-weighted MRI

Abstract

Alzheimer's disease (AD), the most common cause of dementia, presents a global health crisis with its prevalence expected to triple worldwide by 2050, emphasizing the urgent need for early diagnosis to delay progression and improve patient quality of life. Our project aims to detect AD in its early phase by identifying subtle neuroanatomical changes with Radiomics features, offering a more accurate diagnosis.The AssemblyNet segmentation model was used to analyze brain changes by employing anonymized T1 MRI scans from 416 patients. For each segmented label we extracted Radiomic features. After preprocessing of Radiomic features we trained four models, Gradient Booster, Random Forest, Support Vector Classifier, and XGBoost, in a 70%/20%/10% train, validation and test split. All models were hyperparameter tuned with GridSearch, Cross validation and evaluated with accuracy on the test data.208 T1-weighted MRI scans were segmented, with 132 segmentation labels per patient, 1130 Radiomic features per segmentation, totalling in over 31 million features. For all four models we achieved accuracies between 0.71 and 0.86, and the machine learning model with highest accuracy were XGBoost, achieving an accuracy at 0.86 on the segmentation of the left inferior lateral ventricle.Our study's use of segmentation on T1-weighted MRI scans resulted promising accuracies for early AD diagnosis with the machine learning model XGBoost, peaking at 0.86 accuracy. Future research should aim to expand datasets and refine methodologies for broader applicability.Implementing Radiomics for early AD detection using T1-weighted MRI scans could substantially improve diagnostic accuracy, enabling earlier interventions that may delay disease progression and improve outcomes, thereby requiring radiographers to adopt more advanced imaging techniques and analysis tools, as well as additional training to effectively interpret complex Radiomic data.

Keywords

Male, Radiomics, Alzheimer Disease/diagnostic imaging, Brain, Alzheimer's disease, Brain/diagnostic imaging, Magnetic Resonance Imaging, Disease detection, Magnetic Resonance Imaging/methods, Early Diagnosis, Alzheimer Disease, Machine learning, Humans, Female, MRI, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
hybrid
Related to Research communities