Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5220/001308...
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
https://research-portal.uu.nl/...
Article . 2025
License: CC BY NC ND
TU Delft Repository
Conference object . 2025
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Self-Supervised Partial Cycle-Consistency for Multi-View Matching

Authors: Taggenbrock, F.; Burghouts, G.J.; Poppe, R.;

Self-Supervised Partial Cycle-Consistency for Multi-View Matching

Abstract

Matching objects across partially overlapping camera views is crucial in multi-camera systems and requires a view-invariant feature extraction network. Training such a network with cycle-consistency circumvents the need for labor-intensive labeling. In this paper, we extend the mathematical formulation of cycle-consistency to handle partial overlap. We then introduce a pseudo-mask which directs the training loss to take partial overlap into account. We additionally present several new cycle variants that complement each other and present a time-divergent scene sampling scheme that improves the data input for this self-supervised setting. Cross-camera matching experiments on the challenging DIVOTrack dataset show the merits of our approach. Compared to the self-supervised state-of-the-art, we achieve a 4.3 percentage point higher F1 score with our combined contributions. Our improvements are robust to reduced overlap in the training data, with substantial improvements in challenging scenes that need to make few matches between many people. Self-supervised feature networks trained with our method are effective at matching objects in a range of multi-camera settings, providing opportunities for complex tasks like large-scale multi-camera scene understanding.

Accepted to VISAPP 2025

Related Organizations
Keywords

Multi-camera, FOS: Computer and information sciences, Feature Learning, Cycle-Consistency, Self-Supervision, Multi-Camera, Computer Vision and Pattern Recognition (cs.CV), Feature learning, Computer Science - Computer Vision and Pattern Recognition, Cycle-consistency, Cross-View Multi-Object Tracking, Self-supervision, Cross-view multi-object tracking

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities