Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Applied Superconductivity
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fabrication and Test of C3a: A Six-Layer Subscale Canted $\cos \theta$ Dipole Magnet Using High-Temperature Superconducting corc Wires

Authors: Dmytro Abraimov; Diego Arbelaez; Lucas Brouwer; Helen Feng; Paolo Ferracin; William B. Ghiorso; Hugh C. Higley; +17 Authors

Fabrication and Test of C3a: A Six-Layer Subscale Canted $\cos \theta$ Dipole Magnet Using High-Temperature Superconducting corc Wires

Abstract

REBCO coated conductors have a strong potential for high-field magnet applications. The REBCO technology, however, is still in its infancy for accelerator magnet applications. As part of the U.S. Magnet Development Program, we developed a six-layer canted cos θ dipole magnet, C3a, using CORC wires developed by Advanced Conductor Technologies LLC. All the layers were wound using a semiautomated winding machine. Three layers of the magnet used CORC wires containing the SuperPower “AP” REBCO tapes and the remaining layers used the wires containing the “HM” tapes. At 77 K, both kinds of CORC wires showed 5% to 10% degradation, after bending to a minimum bend radius of 30 or 35 mm, with respect to the self-field critical current measured before winding. At 4.2 K, the magnet reached 9.5 kA at a ramp rate of 9 A s-1 and generated a dipole field of 1.4 T. The critical current of one layer degraded by 4% after a current transient up to 10.5 kA ramped in an averaged rate of 175 kA s-1 or 20 T s-1. We confirmed the HM CORC wire can carry a higher current than the AP CORC wire at 4.2 K. The test results of the C3a magnet showed that the fabrication and assembly procedure can be used for the upcoming full-scale C3 magnet.

Keywords

REBCO, dipole magnet, 0906 Electrical and Electronic Engineering (for), 0912 Materials Engineering (for), 0204 Condensed Matter Physics (for), 4008 Electrical Engineering (for-2020), CORC wire, General Physics (science-metrix), 40 Engineering (for-2020), 5104 Condensed matter physics (for-2020), 4008 Electrical engineering (for-2020)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!