Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.3...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.36227/techr...
Article . 2025 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.31224/4361...
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Delivery
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
ZENODO
Article . 2024
Data sources: Datacite
ZENODO
Article . 2024
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Article . 2024
Data sources: Datacite
ZENODO
Article . 2024
Data sources: Datacite
ZENODO
Article . 2024
Data sources: Datacite
ZENODO
Article . 2024
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 13 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Leveraging Hypernetworks and Learnable Kernels for Consumer Energy Forecasting Across Diverse Consumer Types

Authors: Muhammad Umair Danish; Katarina Grolinger;

Leveraging Hypernetworks and Learnable Kernels for Consumer Energy Forecasting Across Diverse Consumer Types

Abstract

Consumer energy forecasting is essential for managing energy consumption and planning, directly influencing operational efficiency, cost reduction, personalized energy management, and sustainability efforts. In recent years, deep learning techniques, especially LSTMs and transformers, have been greatly successful in the field of energy consumption forecasting. Nevertheless, these techniques have difficulties in capturing complex and sudden variations, and, moreover, they are commonly examined only on a specific type of consumer (e.g., only offices, only schools). Consequently, this paper proposes HyperEnergy, a consumer energy forecasting strategy that leverages hypernetworks for improved modeling of complex patterns applicable across a diversity of consumers. Hypernetwork is responsible for predicting the parameters of the primary prediction network, in our case LSTM. A learnable adaptable kernel, comprised of polynomial and radial basis function kernels, is incorporated to enhance performance. The proposed HyperEnergy was evaluated on diverse consumers including, student residences, detached homes, a home with electric vehicle charging, and a townhouse. Across all consumer types, HyperEnergy consistently outperformed 10 other techniques, including state-of-the-art models such as LSTM, AttentionLSTM, and transformer.

Country
Canada
Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, 330, Computer Science - Artificial Intelligence, deep learning, Electrical and Computer Engineering, 004, Machine Learning (cs.LG), energy forecasting, Artificial Intelligence (cs.AI), hypernetworks, consumer energy forecasting, Computer Engineering, LSTM

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid
Related to Research communities