Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomechanicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomechanics
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomechanics
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decreased Knee Extensor Torque During Single-Limb Stance: A Computer Simulation Study of Compensations and Consequences

Authors: Sean P. Flanagan;

Decreased Knee Extensor Torque During Single-Limb Stance: A Computer Simulation Study of Compensations and Consequences

Abstract

Background/Objectives: For over 50 years, it has been suggested that the plantar flexors and hip extensors can compensate for weak knee extensors and prevent collapse of the leg during a single-limb stance. However, the effects of these compensations have not been studied thoroughly. The purpose of this computer simulation study was to determine, for a given posture, the hip and ankle net joint torque (NJT) required to prevent leg collapse due to systematic decreases in knee NJT and to determine the effect of these compensations on the horizontal ground reaction force. Methods: Single-limb stance was simulated using a static, multisegmented model in eight different postures. For each posture, the knee NJT was systematically decreased. The ankle and knee NJT necessary to prevent lower extremity collapse, along with any net horizontal ground reaction forces, were then calculated. Results: Decreases in knee NJT required linear increases in ankle and hip NJT to prevent the limb from collapsing. There were greater increases in ankle NJT compared to hip NJT, resulting in posteriorly-directed horizontal ground reaction forces. While the magnitudes were different, these findings applied to all postures simulated. Conclusions: For a given posture, ankle and hip NJTs can compensate for a decrease in knee NJT. However, this resulted in a horizontal ground reaction force, which was in the posterior direction for all the postures examined. This horizontal ground reaction force would induce an acceleration on the body’s center of mass that, if not accounted for, could have deleterious effects on achieving a task objective.

Keywords

net joint moment, QC120-168.85, Descriptive and experimental mechanics, lower extremity, Mechanics of engineering. Applied mechanics, Jacobian matrix, TA349-359, biomechanics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold