Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Procedia Computer Sc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Procedia Computer Science
Article . 2019 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Procedia Computer Science
Article
License: CC BY NC ND
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploiting stack-based buffer overflow using modern day techniques

Authors: Ștefan Nicula; Răzvan Daniel Zota;

Exploiting stack-based buffer overflow using modern day techniques

Abstract

Abstract One of the most commonly known vulnerabilities that can affect a binary executable is the stack-based buffer overflow. The buffer overflow occurs when a program, while writing data to a buffer, overruns the buffer’s boundary and overwrites adjacent memory locations. Nowadays, due to multiple protection mechanisms enforced by the operating system and on the executable level, the buffer overflow has become harder to exploit. Multiple bypassing techniques are often required to be used in order to successfully exploit the vulnerability and control the execution flow of the studied executable. One of the security features designed as protection mechanisms is Data Execution Prevention (DEP) which helps prevent code execution from the stack, heap or memory pool pages by marking all memory locations in a process as non-executable unless the location explicitly contains executable code. Another protection mechanism targeted is the Address Space Layout Randomization (ASLR), which is often used in conjunction with DEP. This security feature randomizes the location where the system executables are loaded into memory. By default, modern day operating systems have these security features implemented. However, on the executable level, they have to be explicitly enabled. Most of the protection mechanisms, like the ones mentioned above, require certain techniques in order to bypass them and many of these techniques are using some form of address memory leakage in order to leverage an exploit. By successfully exploiting a buffer overflow, the adversary can potentially obtain code execution on the affected operating system which runs the vulnerable executable. The level of privilege granted to the adversary is highly depended on the level of privilege that the binary is executed with. As such, an adversary may gain elevated privileges inside the system. Most of the times, this type of vulnerability is used for privilege escalation attacks or for gaining remote code execution on the system.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Top 10%
gold
Related to Research communities