
doi: 10.1155/2020/9741595
This paper proposes the shrink Gaussian distribution quantum-behaved optimization (SG-QPSO) algorithm to solve economic dispatch (ED) problems from the power systems area. By shrinking the Gaussian probability distribution near the learning inclination point of each particle iteratively, SG-QPSO maintains a strong global search capability at the beginning and strengthen its local search capability gradually. In this way, SG-QPSO improves the weak local search ability of QPSO and meets the needs of solving the ED optimization problem at different stages. The performance of the SG-QPSO algorithm was obtained by evaluating three different power systems containing many nonlinear features such as the ramp rate limits, prohibited operating zones, and nonsmooth cost functions and compared with other existing optimization algorithms in terms of solution quality, convergence, and robustness. Experimental results show that the SG-QPSO algorithm outperforms any other evaluated optimization algorithms in solving ED problems.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
