
doi: 10.12737/11612
The work objective is the development and validation of a new type micromechanical gyroscope which allows maintaining the transformation of angular rotation velocities of the supporting base into electrical signals simultaneously about two rotation axes. A new micromechanical gyroscope that both preserves positive qualities of the known Russian and foreign analogues, and differs in its enhancement due to converting the angular rotation velocities of the supporting base into electrical signals simultaneously about two rotation axes, is proposed and described. The presented technical solution is protected by the Russian Federation patent for invention in 2015. The proposed gyroscope can be applied in the navigation systems, reference systems, control systems of various mobile objects in the aviation, rocket and space technology, robotics, instrumentation, tool engineering, transport, etc.
поверхностные акустические волны, микромеханический гироскоп, TA401-492, micromechanical gyroscope, acoustic waves, surface acoustic waves, Materials of engineering and construction. Mechanics of materials, акустические волны
поверхностные акустические волны, микромеханический гироскоп, TA401-492, micromechanical gyroscope, acoustic waves, surface acoustic waves, Materials of engineering and construction. Mechanics of materials, акустические волны
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
