Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the ACMarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the ACM
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Discovering the Roots: Uniform Closure Results for Algebraic Classes Under Factoring

Discovering the roots: uniform closure results for algebraic classes under factoring
Authors: Pranjal Dutta; Nitin Saxena; Amit Sinhababu;

Discovering the Roots: Uniform Closure Results for Algebraic Classes Under Factoring

Abstract

Newton iteration is an almost 350-year-old recursive formula that approximates a simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI) that approximates all roots simultaneously. In this form, the process yields better circuit complexity in the case when the number of rootsris small but the multiplicities are exponentially large. Our method sets up a linear system inrunknowns and iteratively builds the roots as formal power series. For an algebraic circuit\( f(x_1,\ldots ,x_n) \)of sizes, we prove that each factor has size at most a polynomial insand the degree of the squarefree part off. Consequently, if\( f_1 \)is a\( 2^{\Omega (n)} \)-hard polynomial, then any nonzero multiple\( \prod _{i} f_i^{e_i} \)is equally hard for arbitrary positive\( e_i \)’s, assuming that\( \sum _i\deg (f_i) \)is at most\( 2^{O(n)} \).It is an old open question whether the class of poly(n) size formulas (respectively, algebraic branching programs) is closed under factoring. We show that given a polynomialfof degree\( n^{O(1)} \)and formula (respectively, algebraic branching program) size\( n^{O(\log n)} \), we can find a similar-size formula (respectively, algebraic branching program) factor in randomized poly(\( n^{\log n} \)) time. Consequently, if the determinant requires an\( n^{\Omega (\log n)} \)size formula, then the same can be said about any of its nonzero multiples.In all of our proofs, we exploit the following property of multivariate polynomial factorization. Under a random linear transformation\( \tau \), the polynomial\( f(\tau \overline{x}) \)completely factors via power series roots. Moreover, the factorization adapts well to circuit complexity analysis. Therefore, with the help of the strong mathematical characterizations and the ‘allRootsNI’ technique, we make significant progress towards the old open problems; supplementing the vast body of classical results and concepts in algebraic circuit factorization (e.g., [17,51,54,111]).

Keywords

FOS: Computer and information sciences, Computational methods for problems pertaining to field theory, Computer Science - Computational Complexity, F.1.1, I.1.2, F.1.3, G.1.5, Networks and circuits as models of computation; circuit complexity, Analysis of algorithms and problem complexity, Polynomials in real and complex fields: location of zeros (algebraic theorems), Computational Complexity (cs.CC), Symbolic computation and algebraic computation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Average
Green
bronze