
In this work, we address the algorithm selection problem for classification via meta-learning and generative adversarial networks. We focus on the dataset representation question. The matrix representation of classification dataset is not sensitive to swapping any two rows or any two columns. We suggest a special method to reduce a dataset to a unified form. This allows to apply generative adversarial networks to classification dataset generation. In this setting, a generator generates new classification datasets in a matrix form, while a conditional discriminator is trying to predict for a dataset and an algorithm if the dataset is real and the algorithm would show the best performance on this dataset. We also suggest a graph convolutional network as a discriminator that is capable to work with such forms, which encode a dataset as a weighted graph with nodes representing objects.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
