Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tensor-Representation-Based Multiview Attributed Graph Clustering With Smooth Structure

Authors: Yuan Gao 0031; Qian Zhao; Laurence T. Yang; Jing Yang 0051; Lei Ren 0001;

Tensor-Representation-Based Multiview Attributed Graph Clustering With Smooth Structure

Abstract

Over the past few years, multiview attributed graph clustering has achieved promising performance via various data augmentation strategies. However, we observe that the aggregation of node information in multilayer graph autoencoder (GAE) is prone to deviation, especially when edges or node attributes are randomly perturbed. To this end, we innovatively propose a tensor-representation-based multiview attributed graph clustering framework with smooth structure (MV_AGC) to avoid the bias caused by random view construction. Specifically, we first design a novel tensor-product-based high-order graph attention network (GAT) with structural constraints to realize efficient attribute fusion and semantic consistency encoding. By imposing attribute augmentation mechanisms and smooth constraints (SCs) on the proposed high-order graph attention autoencoder simultaneously, MV_AGC effectively eliminates the instability of reconstructed graph structures and learns a more compact node representation during training. In addition, we also theoretically analyze the stronger generality and expressiveness of the proposed tensor-product-based attention mechanism over the classical GAT and establish an intuitive connection between them. Furthermore, to address the performance degradation caused by clustering distribution updating, we further develop a simple yet effective clustering objective function-guided self-optimizing module for the final clustering performance improvement. Experimental results on the six benchmark datasets have demonstrated that our proposed method can achieve state-of-the-art clustering performance.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!