Powered by OpenAIRE graph
Found an issue? Give us feedback

НЕЙРОСЕТЬ TDNN ДЛЯ ДИАГНОСТИКИ СОСТОЯНИЯ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ ГЛАВНОГО ПРОВЕТРИВАНИЯ

НЕЙРОСЕТЬ TDNN ДЛЯ ДИАГНОСТИКИ СОСТОЯНИЯ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ ГЛАВНОГО ПРОВЕТРИВАНИЯ

Abstract

Currently, the increasing of operational safety is one of the major problems that exist in the mining industry. The problem of emergency equipment for mining industry is caused by the rapid increase in the share of depletion of its physical resources. Among the existing mine equipment, one of the most important roles is played by fan installations of the main airing, which ensure normal vital activity of the mine personnel. Therefore, an important task is to develop a software component, designed to diagnose the state of it and to be used in computer systems. At the heart of this objective lies the problem of building effective methods, providing high speed of diagnostics model training, as well as a high probability, adequacy and speed of signals recognition, which contain the vibrational information. At present, as a tool for vibration diagnostics, the following calculation methods are most commonly used: kurtosis, crest factor, RMS value, envelope spectrum. However, when using these markers separately for diagnosis of fan installations of the main airing condition, the probability of error is no less than 0.05. On the other hand, the processing speed of vibrational information is poor. Therefore, the development of methods for intelligent integrated diagnostics of fan installations of the main airing is relevant. As the use of artificial neural networks in the diagnosis gives tangible advantages, which are the following: the interaction between the factors is studied on finished models; it does not require any assumptions regarding the distribution of factors; a priori information about the factors can be omitted; the initial data can be highly correlated, incomplete or noisy; it is possible to conduct the analysis of systems with a high degree of nonlinearity; fast model development; high adaptability; the analysis of systems with a large number of factors; it does not require a complete enumeration of all possible models; the analysis of systems with non-uniform factors, neural network method of diagnosis is used in the article. The aim of the study consists in the development of a method for analysis of the process of changing the condition of fan installations of the main airing. The article defines the structure of the artificial neural network model, which is a TDNN neural network, that allows to explore the spectrum envelope at certain points of time. The minimum root-mean-square error has been chosen as a criterion for evaluating the effectiveness of the neural network diagnostic model. As a result of a numerical study, it is found that in the presence of 16 modules in the input layer, the value of RMS error does not change significantly, the proposed network provides diagnostic results with a minimum deviation. The use of the proposed batch training mode has made it possible to accelerate the forward and the reverse strokes. The created algorithms can be used for solving problems related to the diagnostics of electromechanical objects.

Keywords

TDNN, производственная безопасность, batch training mode, neural network, fan installation of the main airing, diagnostics, диагностика, вентиляторная установка главного проветривания, пакетный режим обучения, operational safety, нейронная сеть

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold