Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decentralized Asynchronous Multi-player Bandits

Authors: Fan, Jingqi; Zhao, Canzhe; Li, Shuai; Wang, Siwei;

Decentralized Asynchronous Multi-player Bandits

Abstract

In recent years, multi-player multi-armed bandits (MP-MAB) have been extensively studied due to their wide applications in cognitive radio networks and Internet of Things systems. While most existing research on MP-MAB focuses on synchronized settings, real-world systems are often decentralized and asynchronous, where players may enter or leave the system at arbitrary times, and do not have a global clock. This decentralized asynchronous setting introduces two major challenges. First, without a global time, players cannot implicitly coordinate their actions through time, making it difficult to avoid collisions. Second, it is important to detect how many players are in the system, but doing so may cost a lot. In this paper, we address the challenges posed by such a fully asynchronous setting in a decentralized environment. We develop a novel algorithm in which players adaptively change between exploration and exploitation. During exploration, players uniformly pull their arms, reducing the probability of collisions and effectively mitigating the first challenge. Meanwhile, players continue pulling arms currently exploited by others with a small probability, enabling them to detect when a player has left, thereby addressing the second challenge. We prove that our algorithm achieves a regret of $\mathcal{O}(\sqrt{T \log T} + {\log T}/{Δ^2})$, where $Δ$ is the minimum expected reward gap between any two arms. To the best of our knowledge, this is the first efficient MP-MAB algorithm in the asynchronous and decentralized environment. Extensive experiments further validate the effectiveness and robustness of our algorithm, demonstrating its applicability to real-world scenarios.

Keywords

Machine Learning, FOS: Computer and information sciences, Machine Learning (stat.ML), Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green