Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
SIAM Journal on Computing
Article . 2021 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 10 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reducing Path TSP to TSP

Reducing path TSP to TSP
Authors: Vera Traub; Jens Vygen; Rico Zenklusen;
Abstract

We present a black-box reduction from the path version of the Traveling Salesman Problem (Path TSP) to the classical tour version (TSP). More precisely, we show that given an $��$-approximation algorithm for TSP, then, for any $��>0$, there is an $(��+��)$-approximation algorithm for the more general Path TSP. This reduction implies that the approximability of Path TSP is the same as for TSP, up to an arbitrarily small error. This avoids future discrepancies between the best known approximation factors achievable for these two problems, as they have existed until very recently. A well-studied special case of TSP, Graph TSP, asks for tours in unit-weight graphs. Our reduction shows that any $��$-approximation algorithm for Graph TSP implies an $(��+��)$-approximation algorithm for its path version. By applying our reduction to the $1.4$-approximation algorithm for Graph TSP by Seb�� and Vygen, we obtain a polynomial-time $(1.4+��)$-approximation algorithm for Graph Path TSP, improving on a recent $1.497$-approximation algorithm of Traub and Vygen. We obtain our results through a variety of new techniques, including a novel way to set up a recursive dynamic program to guess significant parts of an optimal solution. At the core of our dynamic program we deal with instances of a new generalization of (Path) TSP which combines parity constraints with certain connectivity requirements. This problem, which we call $��$-TSP, has a constant-factor approximation algorithm and can be reduced to TSP in certain cases when the dynamic program would not make sufficient progress.

Related Organizations
Keywords

FOS: Computer and information sciences, Combinatorial optimization, Discrete Mathematics (cs.DM), traveling salesman problem, Dynamic programming, Approximation algorithms, path TSP, Computer Science - Data Structures and Algorithms, FOS: Mathematics, Mathematics - Combinatorics, Data Structures and Algorithms (cs.DS), Combinatorics (math.CO), approximation algorithm, Computer Science - Discrete Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
Green