
This paper addresses a multiobjective version of the Team Orienteering Problem (TOP). The TOP focuses on selecting a subset of customers for maximum rewards while considering time and fleet size constraints. This study extends the TOP by considering two objectives: maximizing total rewards from customer visits and maximizing visits to prioritized nodes. The MultiObjective TOP (MO-TOP) is formulated mathematically to concurrently tackle these objectives. A multistart biased-randomized algorithm is proposed to solve MO-TOP, integrating exploration and exploitation techniques. The algorithm employs a constructive heuristic defining biefficiency to select edges for routing plans. Through iterative exploration from various starting points, the algorithm converges to high-quality solutions. The Pareto frontier for the MO-TOP is generated using the weighted method, epsilon-constraint method, and Epsilon-Modified Method. Computational experiments validate the proposed approach’s effectiveness, illustrating its ability to generate diverse and high-quality solutions on the Pareto frontier. The algorithms demonstrate the ability to optimize rewards and prioritize node visits, offering valuable insights for real-world decision making in team orienteering applications.
biased-randomized algorithms, Biased-randomized algorithms, Pareto frontier, heuristics, QA75.5-76.95, team orienteering problem, Electronic computers. Computer science, Heuristics, multiobjective optimization, Team orienteering problem, Multiobjective optimization
biased-randomized algorithms, Biased-randomized algorithms, Pareto frontier, heuristics, QA75.5-76.95, team orienteering problem, Electronic computers. Computer science, Heuristics, multiobjective optimization, Team orienteering problem, Multiobjective optimization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
