Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

GPU Collision Detection Using Spatial Subdivision With Applications in Contact Dynamics

Authors: Hammad Mazhar;

GPU Collision Detection Using Spatial Subdivision With Applications in Contact Dynamics

Abstract

This work concentrates on the issue of rigid body collision detection, a critical component of any software package employed to approximate the dynamics of multibody systems with frictional contact. This paper presents a scalable collision detection algorithm designed for massively parallel computing architectures. The approach proposed is implemented on a ubiquitous Graphics Processing Unit (GPU) card and shown to achieve a 40x speedup over state-of-the art Central Processing Unit (CPU) implementations when handling multi-million object collision detection. GPUs are composed of many (on the order of hundreds) scalar processors that can simultaneously execute an operation; this strength is leveraged in the proposed algorithm. The approach can detect collisions between five million objects in less than two seconds; with newer GPUs, the capability of detecting collisions between eighty million objects in less than thirty seconds is expected. The proposed methodology is expected to have an impact on a wide range of granular flow dynamics and smoothed particle hydrodynamics applications, e.g. sand, gravel and fluid simulations, where the number of contacts can reach into the hundreds of millions.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!