
In recent years, image semantic segmentation technology has developed rapidly, but image annotation usually requires a significant amount of human and financial resources, especially for remote sensing image annotation, which can be expensive and sometimes even unaffordable. To address this issue, this paper integrates the idea of curriculum learning into the self-training method and screens reliable pseudo-labels through computing image-level confidence, significantly reducing the confirmation error problem. Furthermore, the semi-supervised model in this paper combines implicit semantic enhancement with strong data augmentation, which can reduce the coupling between the teacher model and the student model’s prediction distribution and enhance the model’s robustness. Finally, the proposed semi-supervised method is experimentally verified using the ISPRS competition dataset and compared with existing state-of-the-art (SOTA) methods. Experimental results show that the proposed semi-supervised segmentation method achieves higher segmentation accuracy compared to self-training methods. Moreover, despite not using iterative training to simplify the training process, the proposed method still yields satisfactory segmentation results.
Deep convolutional neural networks, Semantic labeling, Semi-supervised learning, TA1-2040, Engineering (General). Civil engineering (General), Remote sensing images
Deep convolutional neural networks, Semantic labeling, Semi-supervised learning, TA1-2040, Engineering (General). Civil engineering (General), Remote sensing images
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
