Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/igarss...
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

Sparsity Constrained Convolutional Autoencoder Network for Hyperspectral Image Unmixing

Authors: Zhengang Zhao; Hao Wang; Yuchen Liang; Tao Huang; Yi Xiao 0007; Xianchuan Yu;

Sparsity Constrained Convolutional Autoencoder Network for Hyperspectral Image Unmixing

Abstract

Hyperspectral images (HSIs) contain a large number of mixed pixels due to low spatial resolution, which poses great challenges to the analyses and applications of HSIs. In recent years, convolutional neural networks (CNNs) have attained promising performance in HSI field. However, few CNN-based methods are proposed to solve the hyperspectral unmixing (HU) problem because of insufficient labeled samples. In this paper, we propose a novel unsupervised method, sparsity constrained convolutional autoencoder network (SC-CAE), for the HU problem. The data are preprocessed by principal component analysis (PCA) and then fed into the encoder network to obtain low dimensional representations. The decoder network is to reconstruct the original data from these low dimensional representations. Under the sparse constraint, the endmember matrix and the abundance matrix are obtained after many training epochs. The experiment results on synthetic dataset and real dataset show that our method has evident advantages compared with several state-of-the-art methods.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!