Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1137/1.9781...
Part of book or chapter of book . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
http://dx.doi.org/10.1137/1.97...
Part of book or chapter of book . 2025
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deterministic Parallel High-Quality Hypergraph Partitioning

Authors: Krause, Robert; Gottesbüren, Lars; Maas, Nikolai;

Deterministic Parallel High-Quality Hypergraph Partitioning

Abstract

We present a deterministic parallel multilevel algorithm for balanced hypergraph partitioning that matches the state of the art for non-deterministic algorithms. Deterministic parallel algorithms produce the same result in each invocation, which is crucial for reproducibility. Moreover, determinism is highly desirable in application areas such as VLSI design. While there has been tremendous progress in parallel hypergraph partitioning algorithms recently, deterministic counterparts for high-quality local search techniques are missing. Consequently, solution quality is severely lacking in comparison to the non-deterministic algorithms. In this work we close this gap. First, we present a generalization of the recently proposed Jet refinement algorithm. While Jet is naturally amenable to determinism, significant changes are necessary to achieve competitive performance on hypergraphs. We also propose an improved deterministic rebalancing algorithm for Jet. Moreover, we consider the powerful but slower flow-based refinement and introduce a scheme that enables deterministic results while building upon a non-deterministic maximum flow algorithm. As demonstrated in our thorough experimental evaluation, this results in the first deterministic parallel partitioner that is competitive to the highest quality solvers. With Jet refinement, we match or exceed the quality of Mt-KaHyPar's non-deterministic default configuration while being only 15\% slower on average. We observe self-relative speedups of up to 55 on 64 cores with a 22.5$\times$ average speedup. Our deterministic flow-based refinement exceeds the quality of the non-deterministic variant by roughly 1\% on average but requires 31\% more running time.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Funded by