
arXiv: 2502.07435
Derivative-Free Optimization (DFO) involves methods that rely solely on evaluations of the objective function. One of the earliest strategies for designing DFO methods is to adapt first-order methods by replacing gradients with finite-difference approximations. The execution of such methods generates a rich dataset about the objective function, including iterate points, function values, approximate gradients, and successful step sizes. In this work, we propose a simple auxiliary procedure to leverage this dataset and enhance the performance of finite-difference-based DFO methods. Specifically, our procedure trains a surrogate model using the available data and applies the gradient method with Armijo line search to the surrogate until it fails to ensure sufficient decrease in the true objective function, in which case we revert to the original algorithm and improve our surrogate based on the new available information. As a proof of concept, we integrate this procedure with the derivative-free method proposed in (Optim. Lett. 18: 195--213, 2024). Numerical results demonstrate significant performance improvements, particularly when the approximate gradients are also used to train the surrogates.
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
