Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CONICET Digital
Article . 2017
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal on Software Tools for Technology Transfer
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

Formal specification and implementation of an automated pattern-based parallel-code generation framework

Authors: Gervasio Pérez; Sergio Yovine;

Formal specification and implementation of an automated pattern-based parallel-code generation framework

Abstract

Programming correct parallel software in a cost-effective way is a challenging task requiring a high degree of expertise. As an attempt to overcoming the pitfalls undermining parallel programming, this paper proposes a pattern-based, formally grounded tool that eases writing parallel code by automatically generating platform-dependent programs from high-level, platform-independent specifications. The tool builds on three pillars: (1) a platform-agnostic parallel programming pattern, called PCR, (2) a formal translation of PCRs into a parallel execution model, namely Concurrent Collections (CnC), and (3) a program rewriting engine that generates code for a concrete runtime implementing CnC. The experimental evaluation carried out gives evidence that code produced from PCRs can deliver performance metrics which are comparable with handwritten code but with assured correctness. The technical contribution of this paper is threefold. First, it discusses a parallel programming pattern, called PCR, consisting of producers, consumers, and reducers which operate concurrently on data sets. To favor correctness, the semantics of PCRs is mathematically defined in terms of the formalism FXML. PCRs are shown to be composable and to seamlessly subsume other well-known parallel programming patterns, thus providing a framework for heterogeneous designs. Second, it formally shows how the PCR pattern can be correctly implemented in terms of a more concrete parallel execution model. Third, it proposes a platform-agnostic C++ template library to express PCRs. It presents a prototype source-to-source compilation tool, based on C++ template rewriting, which automatically generates parallel implementations relying on the Intel CnCC++ library.

Country
Argentina
Keywords

PARALLEL PROGRAMMING, SOFTWARE DESIGN PATTERNS, FORMAL METHODS, https://purl.org/becyt/ford/1.2, AUTOMATED CODE GENERATION, https://purl.org/becyt/ford/1

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!