
In the field of distributed computing, there are many round-based algorithms to solve fundamental problems, such as leader election and distributed consensus. Due to the nature of these algorithms, round numbers are unbounded and can increase infinitely during executions of the algorithms. This can lead to the state space explosion problem when verifying correctness of these algorithms using model checking. In this paper, we present a general idea of investigating the bounded distance of round numbers in round-based algorithms. We can manage to transform their state spaces into finite by maintaining such relations in a proper way, and thus make automatic verification of these algorithms possible. We apply this idea to several algorithms and present their verification results in the model checker Spin.
: Computer science [C05] [Engineering, computing & technology], : Sciences informatiques [C05] [Ingénierie, informatique & technologie]
: Computer science [C05] [Engineering, computing & technology], : Sciences informatiques [C05] [Ingénierie, informatique & technologie]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
