Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medical & Biological...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical & Biological Engineering & Computing
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New hybrid stochastic-deterministic technique for fast registration of dermatological images

Authors: S A, Pavlopoulos;

New hybrid stochastic-deterministic technique for fast registration of dermatological images

Abstract

Digital image processing in the medical field has become very popular in recent years owing to the significant advantages it offers over conventional techniques of visual or analogue image analysis. One of the most significant aspects in medical image processing has been that of image registration, which deals with the task of registering two images taken under different conditions. Image registration is considered an important issue in the field of dermatology, as pictures of a lesion taken in different periods need to be compared and quantitatively analysed. A hybrid image registration scheme was developed and evaluated for dermatological applications. The method splits the parameter estimation problem into two, with a combination of deterministic and iterative estimation techniques. The scaling and rotation parameters are estimated using a cross-correlation of image invariant image descriptors algorithm, whereas the two translation parameters are estimated with a non-parametric similarity criterion and a hill-climbing optimisation scheme. The efficacy of the method has been validated for the registration and comparison of malignant melanoma images. Determination of rotation and scaling parameters was performed using the log-polar transformation technique, which proved to be very accurate, even when high rotation and scaling values were imposed. Deviations for the rotation parameter estimations were less than 0.5%, whereas, for the scaling factor, differences were on average less than 2.5%, with a maximum difference estimated to be 4.5%. Translation parameter estimation was performed using integer similarity measures namely the stochastic sign change, the deterministic sign change (DSC) and the window value range, the performance of which has been assessed and, in all cases, was found to be highly effective. A novel hill-climbing optimisation algorithm has been proposed and, in combination with the DSC similarity criterion, was evaluated and proved to successfully estimate translation parameters. Thus the proposed hybrid registration technique can successfully estimate problem parameters in a time-efficient manner.

Keywords

Stochastic Processes, Skin Neoplasms, Image Processing, Computer-Assisted, Humans, Computer Simulation, Melanoma, Algorithms, Neoplasm Staging

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!