
The integrated vehicle-crew-roster problem with days-off pattern aims to simultaneously determine minimum cost sets of vehicle and daily crew schedules that cover all timetabled trips and a minimum cost roster covering all daily crew duties according to a pre-defined days-off pattern. This problem is modeled as a mixed binary linear programming problem. A heuristic approach with embedded column generation and branch-and-bound techniques within a Benders decomposition is proposed. The new methodology was tested on real instances and the computational results are promising.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
