Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Information Fusionarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Information Fusion
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gradient entropy metric and p-Laplace diffusion constraint-based algorithm for noisy multispectral image fusion

Authors: Wenda Zhao; Zhijun Xu; Jian Zhao;

Gradient entropy metric and p-Laplace diffusion constraint-based algorithm for noisy multispectral image fusion

Abstract

Display Omitted Highly promising and applied noisy multispectral image fusion.Adopting the matrix of structure tensor to fuse the gradient information.Gradient entropy metric-based weighted gradient to extract image features, avoiding noise interference.Local adaptive p-Laplace diffusion constraint is constructed while rebuilding the fused gradient field rebuilding the fused image from the fused gradient field. Noise is easily mistaken as useful features of input images, and therefore, significantly reducing image fusion quality. In this paper, we propose a novel gradient entropy metric and p-Laplace diffusion constraint-based method. Specifically, the method is based on the matrix of structure tensor to fuse the gradient information. To minimize the negative effects of noise on the selections of image features, the gradient entropy metric is proposed to construct the weight for each gradient of input images. Particularly, the local adaptive p-Laplace diffusion constraint is constructed to further suppress noise when rebuilding the fused image from the fused gradient field. Experimental results show that the proposed method effectively preserves edge detail features of multispectral images while suppressing noise, achieving an optimal visual effect and more comprehensive quantitative assessments compared to other existing methods.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!