
A Distributed Autonomous Neuro-Gen Learning Engine (DANGLE) is proposed in this paper for file type identification. DANGLE is a machine learning tool designed to solve limitations of existing implementation of neural networks, namely excessive training time, fixed architecture and catastrophic forgetting. DANGLE consists of a Gene Regulatory Engine (GRE) and a Distributed Adaptive Neural Network (DANN). File type identification is one of the phases in computer forensics, especially document file type identification. File type identification is a process of knowing the format of a file to determine the real file type of the file. In this paper, it is shown that DANGLE's performance is better than both EFuNN and ECF in identifying file type. The proposed DANGLE is also capable of identifying document files with an accuracy of 94.33%.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
