Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A High Static Performance Hierarchical Three-Dimensional Shifted Completely Connected Network

Authors: Mohammed N. M. Ali; M. M. Hafizur Rahman; Adamu Abubakar Ibrahim; Mohammed Al-Naeem; Eklas Hossain;

A High Static Performance Hierarchical Three-Dimensional Shifted Completely Connected Network

Abstract

In recent years, there has been a significant shift toward the adoption of the “Internet of Things (IoT)” era, in which vast amounts of data are collected and processed, and Artificial intelligence (AI) is used to make critical choices. When acting in real-time, it is vital to use devices with a lot of computing power. MPC (Massively Parallel Computer) Two-dimensional (2D) design systems are the most powerful computers available. Unfortunately, they can’t meet the need for the advanced computing operation required by many applications. As a result, it is critical to invest in developing high operational capacity systems that will meet the current computational power consumption demands. This paper developed the architecture of the two-dimensional Shifted Completely Connected Network (2D-SCCN) and proposed a three-dimensional (3D) network to achieve greater capacity and performance. The shortest path protocol on three-dimensional Shifted Completely Connected Network (3D- SCCN) was established, tested by computer simulator, and compared based on “shortest diameter”, “shortest average distance”, “lowest cost”, “moderate bisection width”, and “high arc-connectivity” among other characteristics. As a result, “3D-SCCN” was the most efficient method of transmitting a message between two nodes, increasing the system’s real-time response capability.

Keywords

Shifted completely connected network (SCCN), massively parallel computer (MPC) systems, network-on-chip (NOC), static network performance, Electrical engineering. Electronics. Nuclear engineering, hierarchical interconnection networks (HINs), interconnection networks, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold