
In this paper, we introduce OT-PCA, a novel approach for conducting Plaintext-Checking (PC) oracle based side-channel attacks, specifically designed for Hamming Quasi-Cyclic (HQC). By calling the publicly accessible HQC decoder, we build offline templates that enable efficient extraction of soft information for hundreds of secret positions with just a single PC oracle call. Our method addresses critical challenges in optimizing key-related information extraction, including maximizing decryption output entropy and ensuring error pattern independence, through the use of genetic-style algorithms.Extensive simulations demonstrate that our new attack method significantly reduces the required number of oracle calls, achieving a 2.4-fold decrease for hqc-128 and even greater reductions for hqc-192 and hqc-256 compared to current state-of-the-art methods. Notably, the attack shows strong resilience against inaccuracy in the PC oracle—when the oracle accuracy decreases to 95%, the reduction factor in oracle call requirements increases to 7.6 for hqc-128.Lastly, a real-world evaluation conducted using power analysis on a platform with an ARM Cortex-M4 microcontroller validates the practical applicability and effectiveness of our approach.
TK7885-7895, Computer engineering. Computer hardware, HQC, NIST post-quantum cryptography standardization, Side-channel attacks, Information technology, T58.5-58.64, Code-based cryptography, KEM
TK7885-7895, Computer engineering. Computer hardware, HQC, NIST post-quantum cryptography standardization, Side-channel attacks, Information technology, T58.5-58.64, Code-based cryptography, KEM
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
