Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ARUdAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Magnetic Resonance Imaging
Article . 2023 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Serveur académique lausannois
Article . 2023
License: CC BY NC
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Multicenter Longitudinal MRI Study Assessing LeMan‐PV Software Accuracy in the Detection of White Matter Lesions in Multiple Sclerosis Patients

Authors: Todea, Alexandra Ramona; Melie-Garcia, Lester; Barakovic, Muhamed; Cagol, Alessandro; Rahmanzadeh, Reza; Galbusera, Riccardo; Lu, Po-Jui; +38 Authors

A Multicenter Longitudinal MRI Study Assessing LeMan‐PV Software Accuracy in the Detection of White Matter Lesions in Multiple Sclerosis Patients

Abstract

BackgroundDetecting new and enlarged lesions in multiple sclerosis (MS) patients is needed to determine their disease activity. LeMan‐PV is a software embedded in the scanner reconstruction system of one vendor, which automatically assesses new and enlarged white matter lesions (NELs) in the follow‐up of MS patients; however, multicenter validation studies are lacking.PurposeTo assess the accuracy of LeMan‐PV for the longitudinal detection NEL white‐matter MS lesions in a multicenter clinical setting.Study TypeRetrospective, longitudinal.SubjectsA total of 206 patients with a definitive MS diagnosis and at least two follow‐up MRI studies from five centers participating in the Swiss Multiple Sclerosis Cohort study. Mean age at first follow‐up = 45.2 years (range: 36.9–52.8 years); 70 males.Field Strength/SequenceFluid attenuated inversion recovery (FLAIR) and T1‐weighted magnetization prepared rapid gradient echo (T1‐MPRAGE) sequences at 1.5 T and 3 T.AssessmentThe study included 313 MRI pairs of datasets. Data were analyzed with LeMan‐PV and compared with a manual “reference standard” provided by a neuroradiologist. A second rater (neurologist) performed the same analysis in a subset of MRI pairs to evaluate the rating‐accuracy. The Sensitivity (Se), Specificity (Sp), Accuracy (Acc), F1‐score, lesion‐wise False‐Positive‐Rate (aFPR), and other measures were used to assess LeMan‐PV performance for the detection of NEL at 1.5 T and 3 T. The performance was also evaluated in the subgroup of 123 MRI pairs at 3 T.Statistical TestsIntraclass correlation coefficient (ICC) and Cohen's kappa (CK) were used to evaluate the agreement between readers.ResultsThe interreader agreement was high for detecting new lesions (ICC = 0.97, Pvalue < 10−20, CK = 0.82, P value = 0) and good (ICC = 0.75, P value < 10−12, CK = 0.68, P value = 0) for detecting enlarged lesions. Across all centers, scanner field strengths (1.5 T, 3 T), and for NEL, LeMan‐PV achieved: Acc = 61%, Se = 65%, Sp = 60%, F1‐score = 0.44, aFPR = 1.31. When both follow‐ups were acquired at 3 T, LeMan‐PV accuracy was higher (Acc = 66%, Se = 66%, Sp = 66%, F1‐score = 0.28, aFPR = 3.03).Data ConclusionIn this multicenter study using clinical data settings acquired at 1.5 T and 3 T, and variations in MRI protocols, LeMan‐PV showed similar sensitivity in detecting NEL with respect to other recent 3 T multicentric studies based on neural networks. While LeMan‐PV performance is not optimal, its main advantage is that it provides automated clinical decision support integrated into the radiological‐routine flow.Evidence Level4Technical EfficacyStage 2

Country
Switzerland
Keywords

Male; Humans; Adult; Middle Aged; Multiple Sclerosis/diagnostic imaging; Multiple Sclerosis/pathology; White Matter/diagnostic imaging; White Matter/pathology; Cohort Studies; Retrospective Studies; Magnetic Resonance Imaging/methods; Brain/diagnostic imaging; Brain/pathology; lesion activity; lesion segmentation; longitudinal analysis; longitudinal lesion segmentation; multiple sclerosis; white matter lesions, Male, Adult, 616.8, Multiple Sclerosis, 616.0757, Lesion activity, Longitudinal analysis, Brain, 610 Medicine & health, Middle Aged, White Matter, Magnetic Resonance Imaging, White matter lesions, Multiple sclerosis, Cohort Studies, Longitudinal lesion segmentation, Humans, Lesion segmentation, lesion activity; lesion segmentation; longitudinal analysis; longitudinal lesion segmentation; multiple sclerosis; white matter lesions, Retrospective Studies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
hybrid