Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
SIAM/ASA Journal on Uncertainty Quantification
Article . 2025 . Peer-reviewed
Data sources: Crossref
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adaptive Uncertainty Quantification for Stochastic Hyperbolic Conservation Laws

Adaptive uncertainty quantification for stochastic hyperbolic conservation laws
Authors: Jake J. Harmon; Svetlana Tokareva; Anatoly Zlotnik; Pieter J. Swart;

Adaptive Uncertainty Quantification for Stochastic Hyperbolic Conservation Laws

Abstract

We propose a predictor-corrector adaptive method for the study of hyperbolic partial differential equations (PDEs) under uncertainty. Constructed around the framework of stochastic finite volume (SFV) methods, our approach circumvents sampling schemes or simulation ensembles while also preserving fundamental properties, in particular hyperbolicity of the resulting systems and conservation of the discrete solutions. Furthermore, we augment the existing SFV theory with a priori convergence results for statistical quantities, in particular push-forward densities, which we demonstrate through numerical experiments. By linking refinement indicators to regions of the physical and stochastic spaces, we drive anisotropic refinements of the discretizations, introducing new degrees of freedom (DoFs) where deemed profitable. To illustrate our proposed method, we consider a series of numerical examples for non-linear hyperbolic PDEs based on Burgers' and Euler's equations.

Related Organizations
Keywords

Numerical solutions to stochastic differential and integral equations, uncertainty quantification, error estimation, 35L60, 35L67, 65C30, 65M50, 65M60, Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs, mesh refinement, Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs, Mathematics - Numerical Analysis, stochastic finite volumes, First-order nonlinear hyperbolic equations, Shocks and singularities for hyperbolic equations, adaptivity

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green