Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Basel:...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clinical Infectious Diseases
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clinical Infectious Diseases
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2019
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
edoc
Article . 2019 . Peer-reviewed
Data sources: edoc
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2019
License: CC BY
Data sources: Apollo
https://dx.doi.org/10.60692/5c...
Other literature type . 2019
Data sources: Datacite
https://dx.doi.org/10.5451/uni...
Other literature type . 2019
Data sources: Datacite
https://dx.doi.org/10.60692/2q...
Other literature type . 2019
Data sources: Datacite
versions View all 11 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multicountry Distribution and Characterization of Extended-spectrum β-Lactamase–associated Gram-negative Bacteria From Bloodstream Infections in Sub-Saharan Africa

توزيع وتوصيف البكتيريا سالبة الجرام المرتبطة بالطيف الترددي β - Lactamase من عدوى مجرى الدم في أفريقيا جنوب الصحراء الكبرى
Authors: Trevor Toy; Gi Deok Pak; Trung Pham Duc; James I. Campbell; Muna Ahmed El Tayeb; Vera von Kalckreuth; Justin Im; +43 Authors
APC: 3,492.82 EUR

Multicountry Distribution and Characterization of Extended-spectrum β-Lactamase–associated Gram-negative Bacteria From Bloodstream Infections in Sub-Saharan Africa

Abstract

Abstract Background Antimicrobial resistance (AMR) is a major global health concern, yet, there are noticeable gaps in AMR surveillance data in regions such as sub-Saharan Africa. We aimed to measure the prevalence of extended-spectrum β-lactamase (ESBL) producing Gram-negative bacteria in bloodstream infections from 12 sentinel sites in sub-Saharan Africa. Methods Data were generated during the Typhoid Fever Surveillance in Africa Program (TSAP), in which standardized blood cultures were performed on febrile patients attending 12 health facilities in 9 sub-Saharan African countries between 2010 and 2014. Pathogenic bloodstream isolates were identified at the sites and then subsequently confirmed at a central reference laboratory. Antimicrobial susceptibility testing, detection of ESBL production, and conventional multiplex polymerase chain reaction (PCR) testing for genes encoding for β-lactamase were performed on all pathogens. Results Five hundred and five pathogenic Gram-negative bloodstream isolates were isolated during the study period and available for further characterization. This included 423 Enterobacteriaceae. Phenotypically, 61 (12.1%) isolates exhibited ESBL activity, and genotypically, 47 (9.3%) yielded a PCR amplicon for at least one of the screened ESBL genes. Among specific Gram-negative isolates, 40 (45.5%) of 88 Klebsiella spp., 7 (5.7%) of 122 Escherichia coli, 6 (16.2%) of 37 Acinetobacter spp., and 2 (1.3%) of 159 of nontyphoidal Salmonella (NTS) showed phenotypic ESBL activity. Conclusions Our findings confirm the presence of ESBL production among pathogens causing bloodstream infections in sub-Saharan Africa. With few alternatives for managing ESBL-producing pathogens in the African setting, measures to control the development and proliferation of AMR organisms are urgently needed.

Keywords

Acinetobacter baumannii, antibiotic resistance, Antibiotic resistance, Multiplex polymerase chain reaction, Clinical Biochemistry, Drug Resistance, Bacterial/genetics, Supplement Articles, FOS: Basic medicine, Applied Microbiology and Biotechnology, Gene, Salmonella, Antibiotics, Drug Resistance, Multiple, Bacterial, Prevalence, Antimicrobial Susceptibility Testing, Child, Immunology and Microbiology, Acinetobacter, Life Sciences, Middle Aged, extended-spectrum β-lactamase, Polymerase chain reaction, Anti-Bacterial Agents, Gram-Negative Bacterial Infections/blood, Child, Preschool, Pseudomonas aeruginosa, surveillance, Gram-Negative Bacteria/drug effects, Molecular Medicine, Medicine, Multiple, Adult, Adolescent, Microbial Sensitivity Tests, Microbiology, beta-Lactamases, Anti-Bacterial Agents/pharmacology, Global Challenge of Antibiotic Resistance in Bacteria, Microbial Identification and Diagnosis, Global Burden of Antimicrobial Resistance, Young Adult, Enterobacteriaceae, Biochemistry, Genetics and Molecular Biology, Gram-Negative Bacteria, Escherichia coli, Genetics, Humans, antimicrobial resistance, Preschool, Biology, Africa South of the Sahara, Bacteria, Infant, Newborn, Infant, Newborn, Africa South of the Sahara/epidemiology, ESBL, FOS: Biological sciences, Africa, Gram-Negative Bacterial Infections, Sentinel Surveillance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%
Green
hybrid