
While Machine Learning significantly boosts the performance of predictive models, its efficacy varies across different data dimensions. It is essential to cluster time series data of similar characteristics, particularly in the financial sector. However, clustering financial time series data poses considerable challenges due to the market’s inherent complexity and multidimensionality. To address these issues, our study introduces a novel clustering framework that leverages autoencoders for a compressed yet informative representation of financial time series. We rigorously evaluate our approach through multiple dimensionality reduction and clustering algorithms, applying it to key financial indices, including IBEX-35, CAC-40, DAX-30, S&P 500, and FTSE 100. Our findings consistently demonstrate that incorporating autoencoders significantly enhances the granularity and quality of clustering, effectively isolating distinct categories of financial time series. Our findings carry significant ramifications for the financial industry. By refining clustering methodologies, we set the stage for increasingly accurate financial predictive models, offering valuable insights for optimizing investment strategies and enhancing risk management.
financial data processing, neural network applications, Electrical engineering. Electronics. Nuclear engineering, Clustering methods, time series, data compression, TK1-9971
financial data processing, neural network applications, Electrical engineering. Electronics. Nuclear engineering, Clustering methods, time series, data compression, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
