
Abstract This paper proposes a new optimisation method, the Parallel Asynchronous Surrogate Model (PASM) method, which is based on the surrogate models approximation and takes advantage of the asynchronous, parallel processing threads. Additionally, it introduces the Cornering technique (PASM+C), which by using values from the corners of the design space provides a rapid drop of the value of the objective function and a significant reduction of the processing time. An overview and characteristics of the main reference optimisation methods, like Particle Swarm Optimisation PSO and Genetic Algorithm (GA), is presented, together with the results of the computer experiments involving optimisation of the generic car body shape. Significant attention is devoted to the time and computational effort needed for drag minimization by using different optimisation schemes. Finally, the benefits and limitations of the proposed methods are discussed together with their potential impact on the optimisation process workflow.
1712 Software, Corners of the optimisation domain, Parallel optimisation, Car aerodynamics, Cloud computing, 621, High performance computing, Mixed surrogate models
1712 Software, Corners of the optimisation domain, Parallel optimisation, Car aerodynamics, Cloud computing, 621, High performance computing, Mixed surrogate models
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
