Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Waterarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Other literature type . 2015
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Article . 2015 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Mix Inexact-Quadratic Fuzzy Water Resources Management Model of Floodplain (IQT-WMMF) for Regional Sustainable Development of Dahuangbaowa, China

Authors: Zeng, Xueting; Yang, Xiaoliu; Yu, Liyang; Chen, Huili;

A Mix Inexact-Quadratic Fuzzy Water Resources Management Model of Floodplain (IQT-WMMF) for Regional Sustainable Development of Dahuangbaowa, China

Abstract

In this study, a mix inexact-quadratic fuzzy water resources management model of floodplain (IQT-WMMF) has developed, through incorporating techniques of credibility-constrained programming (CP), two-stage programming (TP), interval-parameter programming (IPP) and quadratic programming (QP) within a general framework for limited data availability. The IQT-WMMF can provide an effective linkage between system benefit and the associated economic penalty attributed to the violation of the pre-regulated water target under limited data availabilities expressed probabilistic distributions and interval values; meanwhile, imprecise and no-linear economic data would be resolved. The developed method is applied to a real case of planning water resources in the Dahuangbaowa floodplain, China, with the aim to develop a sustainable water resources management in the study region. A number of scenarios with wet land expansion strategies under various credibility levels are analyzed, implying that different policies can lead to varied water-allocation patterns, system benefits, and system-failure risks. The results discover that water deficits and flood damages have brought negative effects on economic development synchronously, which need to effective plans to reduce losses of shortages and floods for achieving higher system benefits. Tradeoffs between economic benefit and system-failure risk can support generating an increased robustness in risk control for water resources allocation under uncertainties, which is beneficial to adjust the current water-allocation sustainably.

Related Organizations
Keywords

water resources management, quadratic programming, limited data availability, inexact two-stage programming, credibility-constrained programming, flooding diversion, uncertainty

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Top 10%
gold