
High throughput applications with real-time guarantees are increasingly relevant. For these applications, parallelism must be exposed to meet deadlines. Directed Acyclic Graphs (DAGs) are a popular and very general application model that can capture any possible interaction among threads. However, we argue that by constraining the application structure to a set of composable “skeletons”, at the price of losing some generality w.r.t. DAGs, the following advantages are gained: (i) a finer model of the application enables tighter analysis, (ii) specialised scheduling policies are applicable, (iii) programming is simplified, (iv) specialised implementation techniques can be exploited transparently, and (v) the program can be automatically tuned to minimise resource usage while still meeting its hard deadlines. As a first step towards a set of real-time skeletons we conduct a case study with the job farm skeleton and the hard real-time XMOS xCore-200 microcontroller. We present an analytical framework for job farms that reduces the number of required cores by scheduling jobs in batches, while ensuring that deadlines are still met. Our experimental results demonstrate that batching reduces the minimum sustainable period by up to 22%, leading to a reduced number of required cores. The framework chooses the best parameters in 83% of cases and never selects parameters that cause deadline misses. Finally, we show that the overheads introduced by the skeleton abstraction layer are negligible.
parallel computing, HPC, real-time
parallel computing, HPC, real-time
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
