Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hierarchies of Spatially Extended Systems and Synchronous Concurrent Algorithms

Authors: M. J. Poole; J. V. Tucker; A. V. Holden;

Hierarchies of Spatially Extended Systems and Synchronous Concurrent Algorithms

Abstract

First, we study the general idea of a spatially extended system (SES) and argue that many mathematical models of systems in computing and natural science are examples of SESs. We examine the computability and the equational definability of SESs and show that, in the discrete case, there is a natural sense in which an SES is computable if, and only if, it is definable by equations. We look at a simple idea of hierarchical structure for SESs and, using respacings and retimings, we define how one SES abstracts, approximates, or is implemented by another SES. Secondly, we study a special kind of SES called a synchronous concurrent algorithm (SCA). We define the simplest kind of SCA with a global clock and unit delay which are computable and equationally definable by primitive recursive equations over time. We focus on two examples of SCAs: a systolic array for convolution and a non-linear model of cardiac tissue. We investigate the hierarchical structure of SCAs by applying the earlier general concepts for the hierarchical structure of SESs. We apply the resulting SCA hierarchy to the formal analysis of both the implementation of a systolic array and the approximation of a biologically detailed model of cardiac tissue.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!