
Dynamic magnetic resonance imaging (dMRI) speed and imaging quality have always been a crucial issue in medical imaging research. Most existing methods characterize the tensor rank-based minimization to reconstruct dMRI from sampling k- t space data. However, (1) these approaches that unfold the tensor along each dimension destroy the inherent structure of dMR images. (2) they focus on preserving global information only, while ignoring the local details reconstruction such as the spatial piece-wise smoothness and sharp boundaries. To overcome these obstacles, we suggest a novel low-rank tensor decomposition approach by integrating tensor Qatar Riyal (QR) decomposition, low-rank tensor nuclear norm, and asymmetric total variation to reconstruct dMRI, named TQRTV. Specifically, while preserving the tensor inherent structure by utilizing tensor nuclear norm minimization to approximate tensor rank, QR decomposition reduces the dimensions in the low-rank constraint term, thereby improving the reconstruction performance. TQRTV further exploits the asymmetric total variation regularizer to capture local details. Numerical experiments demonstrate that the proposed reconstruction approach is superior to the existing ones.
tensor Qatar Riyal decomposition, Technology and Engineering, LOW-RANK, T)-SPACE, Tensors, Transforms, Discrete Fourier transforms, Dynamic MRI reconstruction, Imaging, tensor total variation, Matrix decomposition, Magnetic resonance imaging, IMAGE-RECONSTRUCTION, PRIORS, Image reconstruction, SPARSE, SEPARATION, ALGORITHM, UNDERSAMPLED (K
tensor Qatar Riyal decomposition, Technology and Engineering, LOW-RANK, T)-SPACE, Tensors, Transforms, Discrete Fourier transforms, Dynamic MRI reconstruction, Imaging, tensor total variation, Matrix decomposition, Magnetic resonance imaging, IMAGE-RECONSTRUCTION, PRIORS, Image reconstruction, SPARSE, SEPARATION, ALGORITHM, UNDERSAMPLED (K
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
