Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ghent University Aca...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Biomedical and Health Informatics
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Smooth Tensor Qatar Riyal Decomposition for Dynamic MRI Reconstruction

Authors: Tingting Xu; Yongyong Chen; Haijin Zeng; Guokai Zhang; Jingyong Su;

Smooth Tensor Qatar Riyal Decomposition for Dynamic MRI Reconstruction

Abstract

Dynamic magnetic resonance imaging (dMRI) speed and imaging quality have always been a crucial issue in medical imaging research. Most existing methods characterize the tensor rank-based minimization to reconstruct dMRI from sampling k- t space data. However, (1) these approaches that unfold the tensor along each dimension destroy the inherent structure of dMR images. (2) they focus on preserving global information only, while ignoring the local details reconstruction such as the spatial piece-wise smoothness and sharp boundaries. To overcome these obstacles, we suggest a novel low-rank tensor decomposition approach by integrating tensor Qatar Riyal (QR) decomposition, low-rank tensor nuclear norm, and asymmetric total variation to reconstruct dMRI, named TQRTV. Specifically, while preserving the tensor inherent structure by utilizing tensor nuclear norm minimization to approximate tensor rank, QR decomposition reduces the dimensions in the low-rank constraint term, thereby improving the reconstruction performance. TQRTV further exploits the asymmetric total variation regularizer to capture local details. Numerical experiments demonstrate that the proposed reconstruction approach is superior to the existing ones.

Country
Belgium
Related Organizations
Keywords

tensor Qatar Riyal decomposition, Technology and Engineering, LOW-RANK, T)-SPACE, Tensors, Transforms, Discrete Fourier transforms, Dynamic MRI reconstruction, Imaging, tensor total variation, Matrix decomposition, Magnetic resonance imaging, IMAGE-RECONSTRUCTION, PRIORS, Image reconstruction, SPARSE, SEPARATION, ALGORITHM, UNDERSAMPLED (K

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities