
arXiv: 1702.08539
This paper considers the optimization-based traffic allocation problem among multiple end points in connectionless networks. The network utility function is modeled as a non-concave function, since it is the best description of the quality of service perceived by users with inelastic applications, such as video and audio streaming. However, the resulting non-convex optimization problem, is challenging and requires new analysis and solution techniques. To overcome these challenges, we first propose a hierarchy of problems whose optimal value converges to the optimal value of the non-convex optimization problem as the number of moments tends to infinity. From this hierarchy of problems, we obtain a convex relaxation of the original non-convex optimization problem by considering truncated moment sequences. For solving the convex relaxation, we propose a fully distributed iterative algorithm, which enables each node to adjust its date allocation/ rate adaption among any given set of next hops solely based on information from the neighboring nodes. Moreover, the proposed traffic allocation algorithm converges to the optimal value of the convex relaxation at a $O(1/K)$ rate, where $K$ is the iteration counter, with a bounded optimality. At the end of this paper, we perform numerical simulations to demonstrate the soundness of the developed algorithm.
15 pages, 4 figures, accepted by the American Control Conference 2017
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
