Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Inverse Problems
Article . 2025 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Randomized block coordinate descent method for linear ill-posed problems

Authors: Qinian Jin; Duo Liu;

Randomized block coordinate descent method for linear ill-posed problems

Abstract

Abstract Consider the linear ill-posed problems of the form ∑ i = 1 b A i x i = y , where, for each i, Ai is a bounded linear operator between two Hilbert spaces Xi and Y . When b is huge, solving the problem by an iterative method using the full gradient at each iteration step is both time-consuming and memory insufficient. Although randomized block coordinate descent (RBCD) method has been shown to be an efficient method for well-posed large-scale optimization problems with a small amount of memory, there still lacks a convergence analysis on the RBCD method for solving ill-posed problems. In this paper, we investigate the convergence property of the RBCD method with noisy data under either a priori or a posteriori stopping rules. We prove that the RBCD method combined with an a priori stopping rule yields a sequence that converges weakly to a solution of the problem almost surely. We also consider the early stopping of the RBCD method and demonstrate that the discrepancy principle can terminate the iteration after finite many steps almost surely. For a class of ill-posed problems with special tensor product form, we obtain strong convergence results on the RBCD method. Furthermore, we consider incorporating the convex regularization terms into the RBCD method to enhance the detection of solution features. To illustrate the theory and the performance of the method, numerical simulations from the imaging modalities in computed tomography and compressive temporal imaging are reported.

Keywords

convergence, Numerical analysis in abstract spaces, Mathematical programming, imaging, 65J20, 65J22, 65J10, 94A08, Numerical Analysis (math.NA), Optimization and Control (math.OC), Numerical methods for mathematical programming, optimization and variational techniques, FOS: Mathematics, linear ill-posed problems, Mathematics - Numerical Analysis, randomized block coordinate descent method, convex regularization term, Mathematics - Optimization and Control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green