
arXiv: 2002.10809
We prove two new results about the randomized query complexity of composed functions. First, we show that the randomized composition conjecture is false: there are families of partial Boolean functions $f$ and $g$ such that $R(f\circ g)\ll R(f) R(g)$. In fact, we show that the left hand side can be polynomially smaller than the right hand side (though in our construction, both sides are polylogarithmic in the input size of $f$). Second, we show that for all $f$ and $g$, $R(f\circ g)=��(\mathop{noisyR}(f)\cdot R(g))$, where $\mathop{noisyR}(f)$ is a measure describing the cost of computing $f$ on noisy oracle inputs. We show that this composition theorem is the strongest possible of its type: for any measure $M(\cdot)$ satisfying $R(f\circ g)=��(M(f)R(g))$ for all $f$ and $g$, it must hold that $\mathop{noisyR}(f)=��(M(f))$ for all $f$. We also give a clean characterization of the measure $\mathop{noisyR}(f)$: it satisfies $\mathop{noisyR}(f)=��(R(f\circ gapmaj_n)/R(gapmaj_n))$, where $n$ is the input size of $f$ and $gapmaj_n$ is the $\sqrt{n}$-gap majority function on $n$ bits.
43 pages
FOS: Computer and information sciences, Computer Science - Computational Complexity, Quantum Physics, FOS: Physical sciences, Computational Complexity (cs.CC), Quantum Physics (quant-ph)
FOS: Computer and information sciences, Computer Science - Computational Complexity, Quantum Physics, FOS: Physical sciences, Computational Complexity (cs.CC), Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
