Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Immunol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Immunology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Immunology
Article . 2025
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Immunotherapy targeting liver cancer tumor-initiating cells: challenges, mechanisms, and emerging therapeutic horizons

Authors: Yinying Chai; Tinghui Xu; Xin Chen; Bihua Chen; Xinghai Du; Zhezhong Zhang;

Immunotherapy targeting liver cancer tumor-initiating cells: challenges, mechanisms, and emerging therapeutic horizons

Abstract

Liver cancer is a major global health burden, with hepatocellular carcinoma (HCC) being the most common type. Liver cancer tumor-initiating cells (TICs) are responsible for recurrence, metastasis, and therapeutic resistance, thereby presenting formidable treatment challenges. This review provides a comprehensive summary of the biological features of liver cancer TICs, including their potential cellular origins, diagnostic difficulties, key signaling pathways, and complex interactions with the tumor immune microenvironment. Special emphasis is placed on immunotherapeutic strategies, which have shown notable progress but remain limited by TIC-induced immune resistance. The review discusses current approaches such as immune checkpoint inhibitors (ICIs), adoptive cell therapies, and tumor vaccines, as well as combination strategies integrating immunotherapy with chemotherapy, targeted therapy, and locoregional interventions. Furthermore, emerging strategies including gene editing, targeted tyrosine kinase inhibition, and artificial intelligence-based tumor prediction are being explored for their potential to improve therapeutic efficacy. The significance of this review lies in highlighting the importance of surmounting the challenges presented by TICs to boost the efficacy of liver cancer treatment. In conclusion, although existing treatment approaches have demonstrated promise, further research is warranted to elucidate the origins of TICs, establish accurate diagnostic methods, and overcome resistance, ultimately enhancing the efficacy of liver cancer treatment and improving patient outcomes.

Related Organizations
Keywords

liver cancer, therapeutic resistance, nanotechnology, Immunology, tumor microenvironment, immunotherapy, Immunologic diseases. Allergy, RC581-607, tumor-initiating cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities
Cancer Research