
The fuzzy c-partition entropy approach for threshold selection is an effective approach for image segmentation. The approach models the image with a fuzzy c-partition, which is obtained using parameterized membership functions. The ideal threshold is determined by searching an optimal parameter combination of the membership functions such that the entropy of the fuzzy c-partition is maximized. It involves large computation when the number of parameters needed to determine the membership function increases. In this paper, a recursive algorithm is proposed for fuzzy 2-partition entropy method, where the membership function is selected as S-function and Z-function with three parameters. The proposed recursive algorithm eliminates many repeated computations, thereby reducing the computation complexity significantly. The proposed method is tested using several real images, and its processing time is compared with those of basic exhaustive algorithm, genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO) and simulated annealing (SA). Experimental results show that the proposed method is more effective than basic exhaustive search algorithm, GA, PSO, ACO and SA.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
