
A new algorithm for the design of optical computing filters for chemical analysis, otherwise known as multivariate optical elements (MOEs), is described. The approach is based on the nonlinear optimization of the MOE layer thicknesses to minimize the standard error in sample prediction for the chemical species of interest using a modified version of the Gauss–Newton nonlinear optimization algorithm. The design algorithm can either be initialized with random layer thicknesses or with layer thicknesses derived from spectral matching of a multivariate principal component regression (PCR) vector for the constituent of interest. The algorithm has been successfully tested by using it to design various MOEs for the determination of Bismarck Brown dye in a binary mixture of Crystal Violet and Bismarck Brown.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
