Downloads provided by UsageCounts
handle: 2117/13218 , 2072/50793
The McMillan map is a one-parameter family of integrable symplectic maps of the plane, for which the origin is a hyperbolic xed point with a homoclinic loop, with small Lyapunov exponent when the parameter is small. We consider a perturbation of the McMillan map for which we show that the loop breaks in two invariant curves which are exponentially close one to the other and which intersect transversely along two primary homoclinic orbits. We compute the asymptotic expansion of several quantities related to the splitting, namely the Lazutkin invariant and the area of the lobe between two consecutive primary homoclinic points. Complex matching techniques are in the core of this work. The coe cients involved in the expansion have a resurgent origin, as shown in
Peer Reviewed
asymptotic formula, Àrees temàtiques de la UPC::Matemàtiques i estadística, :34 Ordinary differential equations::34C Qualitative theory [Classificació AMS], Pertorbació (Matemàtica), Classificació AMS::34 Ordinary differential equations::34C Qualitative theory, Classificació AMS::34 Ordinary differential equations::34E Asymptotic theory, :37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems [Classificació AMS], :Matemàtiques i estadística [Àrees temàtiques de la UPC], :34 Ordinary differential equations::34E Asymptotic theory [Classificació AMS], 517 - Anàlisi, Sistemes dinàmics diferenciables, exponentially small phenomena, Classificació AMS::37 Dynamical systems and ergodic theory::37C Smooth dynamical systems: general theory, Classificació AMS::34 Ordinary differential equations::34M Differential equations in the complex domain, :37 Dynamical systems and ergodic theory::37C Smooth dynamical systems: general theory [Classificació AMS], splitting of separatrices, and nonholonomic systems, McMillan map, Classificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems, Classificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, :34 Ordinary differential equations::34M Differential equations in the complex domain [Classificació AMS]
asymptotic formula, Àrees temàtiques de la UPC::Matemàtiques i estadística, :34 Ordinary differential equations::34C Qualitative theory [Classificació AMS], Pertorbació (Matemàtica), Classificació AMS::34 Ordinary differential equations::34C Qualitative theory, Classificació AMS::34 Ordinary differential equations::34E Asymptotic theory, :37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems [Classificació AMS], :Matemàtiques i estadística [Àrees temàtiques de la UPC], :34 Ordinary differential equations::34E Asymptotic theory [Classificació AMS], 517 - Anàlisi, Sistemes dinàmics diferenciables, exponentially small phenomena, Classificació AMS::37 Dynamical systems and ergodic theory::37C Smooth dynamical systems: general theory, Classificació AMS::34 Ordinary differential equations::34M Differential equations in the complex domain, :37 Dynamical systems and ergodic theory::37C Smooth dynamical systems: general theory [Classificació AMS], splitting of separatrices, and nonholonomic systems, McMillan map, Classificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems, Classificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, :34 Ordinary differential equations::34M Differential equations in the complex domain [Classificació AMS]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 60 | |
| downloads | 52 |

Views provided by UsageCounts
Downloads provided by UsageCounts