
handle: 11585/822611
In this letter we consider a distributed stochastic optimization framework in which agents in a network aim to cooperatively learn an optimal network-wide policy. The goal is to compute local functions to minimize the expected value of a given cost, subject to individual constraints and average coupling constraints. In order to handle the challenges of the distributed stochastic context, we resort to a Lagrangian duality approach that allows us to derive an associated stochastic dual problem with a separable structure. Thus, we propose a distributed algorithm, without a central coordinator, that exploits consensus iterations and stochastic approximation to find an optimal solution to the problem, with attractive scalability properties. We demonstrate convergence of the proposed scheme and validate its behavior through simulations.
Optimization algorithms; Large-scale systems; Distributed control
Optimization algorithms; Large-scale systems; Distributed control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
