
handle: 10045/37068
Vision-based human action recognition allows to detect and understand meaningful human motion. This makes it possible to perform advanced human-computer interaction, among other applications. In dynamic environments, adaptive methods are required to support changing scenario characteristics. Specifically, in human-robot interaction, smooth interaction between humans and robots can only be performed if these are able to evolve and adapt to the changing nature of the scenarios. In this paper, an adaptive vision-based human action recognition method is proposed. By means of an evolutionary optimisation method, adaptive and incremental learning of human actions is supported. Through an evolving bag of key poses, which models the learnt actions over time, the current learning memory is developed to recognise increasingly more actions or actors. The evolutionary method selects the optimal subset of training instances, features and parameter values for each learning phase, and handles the evolution of the model. The experimentation shows that our proposal achieves to adapt to new actions or actors successfully, by rearranging the learnt model. Stable and accurate results have been obtained on four publicly available RGB and RGB-D datasets, unveiling the method’s robustness and applicability.
This work has been partially supported by the European Commission under project “caring4U - A study on people activity in private spaces: towards a multisensor network that meets privacy requirements” (PIEF-GA-2010-274649) and by the Spanish Ministry of Science and Innovation under project “Sistema de visión para la monitorización de la actividad de la vida diaria en el hogar” (TIN2010-20510-C04-02). Alexandros Andre Chaaraoui acknowledges financial support by the Conselleria d’Educació, Formació i Ocupació of the Generalitat Valenciana (fellowship ACIF/2011/160).
Vision and Scene Understanding, Evolutionary computing and genetic algorithms, Human computer interaction, Feature evaluation and selection, Arquitectura y Tecnología de Computadores
Vision and Scene Understanding, Evolutionary computing and genetic algorithms, Human computer interaction, Feature evaluation and selection, Arquitectura y Tecnología de Computadores
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
