Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2018 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Minimizing the mass of a flat bottom of cylindrical apparatus

Authors: Khomyak, Yuriy; Naumenko, Ievgeniia; Zheglova, Victoriia; Popov, Vadim;

Minimizing the mass of a flat bottom of cylindrical apparatus

Abstract

In the bodies of cylindrical apparatuses that operate under pressure, one of the weak elements is a flat bottom whose thickness is increased by 4…5 times in comparison with the wall thickness. This is due to the fact that the bottom is exposed to a more unfavorable bending deformation compared to the wall that «works» on stretching. In order to reduce specific metal consumption for the bottom, we propose the optimization of the shape of a radial cross-section by a rational redistribution of the material: to increase thickness of the bottom in the region of its contact with the wall and to significantly reduce it in the central zone. To describe a variable thickness of the bottom, we applied the Gauss equation with an arbitrary parameter that determines the intensity of change in the thickness in radial direction. We have obtained a general solution to the differential equation of the problem on bending a bottom at a given law of change in its thickness, which is represented using the hypergeometric Kummer’s functions. A technique for concretizing the resulting solution was proposed and implemented, based on the application of conditions of contact between a cylindrical shell and a bottom. The solution derived was used to minimize the mass of the bottom. We have designed a zone of transition from the bottom to the wall whose strength was verified by the method of finite elements under actual conditions.

Keywords

bottom of variable thickness; hypergeometric Kummer’s function; contact between a shell and a round plate, UDC 004.942:624.073.12, днище переменной толщины; гипергеометрическая функция Куммера; контакт оболочки и круговой пластины, днище змінної товщини; гіпергеометрична функція Куммера; контакт оболонки та кругової пластини

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 2
  • 3
    views
    2
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
3
Average
Average
Average
3
2
gold
Related to Research communities