Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BOA - Bicocca Open A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Combinatorial Theory Series B
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Haar graphical representations of finite groups and an application to poset representations

Authors: Morris J.; Spiga P.;

Haar graphical representations of finite groups and an application to poset representations

Abstract

Let $R$ be a group and let $S$ be a subset of $R$. The Haar graph $\mathrm{Haar}(R,S)$ of $R$ with connection set $S$ is the graph having vertex set $R\times\{-1,1\}$, where two distinct vertices $(x,-1)$ and $(y,1)$ are declared to be adjacent if and only if $yx^{-1}\in S$. The name Haar graph was coined by Tomaž Pisanski in one of the first investigations on this class of graphs. For every $g\in R$, the mapping $ρ_g:(x,\varepsilon)\mapsto (xg,\varepsilon)$, $\forall (x,\varepsilon)\in R\times\{-1,1\}$, is an automorphism of $\mathrm{Haar}(R,S)$. In particular, the set $\hat{R}:=\{ρ_g\mid g\in R\}$ is a subgroup of the automorphism group of $\mathrm{Haar}(R,S)$ isomorphic to $R$. In the case that the automorphism group of $\mathrm{Haar}(R,S)$ equals $\hat{R}$, the Haar graph $\mathrm{Haar}(R,S)$ is said to be a Haar graphical representation of the group $R$. Answering a question of Feng, Kovács, Wang, and Yang, we classify the finite groups admitting a Haar graphical representation. Specifically, we show that every finite group admits a Haar graphical representation, with abelian groups and ten other small groups as the only exceptions. Our work on Haar graphs allows us to improve a 1980 result of Babai concerning representations of groups on posets, achieving the best possible result in this direction. An improvement to Babai's related result on representations of groups on distributive lattices follows.

Country
Italy
Keywords

Automorphism group; Bipartite graph; Distributive lattice representation; DRR; Graphical regular representation; GRR; Haar graph; Poset representation; Regular representation;, Haar graph, Finite automorphism groups of algebraic, geometric, or combinatorial structures, automorphism group, Group Theory (math.GR), poset representation, Graphs and abstract algebra (groups, rings, fields, etc.), Group actions on combinatorial structures, bipartite graph, FOS: Mathematics, regular representation, Mathematics - Combinatorics, GRR, Combinatorics (math.CO), distributive lattice representation, graphical regular representation, Mathematics - Group Theory, Arithmetic and combinatorial problems involving abstract finite groups, DRR

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid